

Schulinternes Curriculum für das Fach *Chemie Gymnasium* im Jahrgang 8 [Stand 10/2023]

Lfd. Nr.	Themen	Konkrete Inhalte	Schwerpunkte	Fachspezifische Kompetenzen
8.1	Einführung in die Chemie	 Inhalt und Bedeutung der Chemie Abgrenzung gegenüber Physik und Biologie Gefahren und Sicherheitsmaßnahmen - GHS Verhalten im Chemieraum und beim Experimentieren Chemikalien und Geräte 	 Verhalten beim Experimentieren (Umgang mit Gefahrenstoffen) Verwendung typischer Laborgeräte (Brennerführerschein) 	Erkenntnisgewinnung: Differenzierung zwischen chemischen und physikalischen Phänomen Kommunikation: Nutzung von Fachsprache (Arbeitsgeräte) Nutzung fachlicher Konzepte: Gefahrloser und umweltbewusster Umgang mit Chemikalien
8.2	Stoffe und ihre Eigenschaften	 Dichte Diffusion und Löslichkeit (mit Teilchenmodell) Schmelz- und Siedepunkte (mit Teilchenmodell) Aggregatzustandsänderungen 	 Naturwissenschaftlicher Erkenntnisweg Arbeiten mit dem Gasbrenner Stationenlernen zum Thema "Stoffeigenschaften" Erstellung von Stoffsteckbriefen 	Erkenntnisgewinnung: ■ Ermitteln von Stoffeigenschaften durch Experimente (Identifizierung von Stoffen) Kommunikation: ■ Anwendung und Unterscheidung von Fachsprache Nutzung fachlicher Konzepte: ■ Protokollieren von Versuchen
8.3	Stoffgemische und ihre Trennung	 Unterscheidung von Reinstoff und Stoffgemisch Bezeichnung von Stoffgemischen allgemeine Trennverfahren 	 Schülerversuche zu Trennverfahren Verwendung von Trennverfahren im Alltag (Entsalzung von Wasser, Kläranlage etc.) 	 Erkenntnisgewinnung: Entwickeln von Verfahren zur Trennung Kommunikation: Beschreibung von Versuchsaufbauten Bewertung: Herstellung von Beziehungen zwischen Trennverfahren in Chemie, Umwelt und Industrie Nutzung fachlicher Konzepte: Anwendung erworbener Kenntnisse von Trennverfahren Nutzung des Teilchenmodells zur Beschreibung von Gemischen/Trennverfahren
8.4	Merkmale chemischer Reaktionen	 Stoffumwandlung (mit Teilchenmodell) Gegenüberstellung von chemischen Reaktionen und physikalischen Prozessen 	 Aufstellung von Wortgleichungen (keine Stöchiometrie oder Symbolik) Anfertigung und Auswertung von Energiediagrammen 	Erkenntnisgewinnung: ■ Beobachten von chemischen Reaktionen Kommunikation: ■ Beschreiben von chemischen Reaktionen unter Anwendung von Fachsprache

		 Energiebetrachtung (exotherm und endotherm) Massenerhaltung (Atommodell nach Dalton) 	 Schülerversuche mit Kupfersulfat/Kupfersulfathydrat Schülerversuche zur Oxid- und Sulfidbildung Schülerversuch zum Gesetz der Erhaltung der Masse 	Bewertung: Deuten von chemischen Reaktionen Beurteilung von Chancen und Grenzen von chemischen Reaktionen Nutzung fachlicher Konzepte: Nutzung des Teilchenmodells zur Stoffumwandlung
8.5	Luft – ein lebensnot- wendiges Stoffgemisch	 Zusammensetzung der Luft Luftverschmutzung und Luftreinhaltung Brandverhütung und Brandbekämpfung Nichtmetall- und Metalloxide 	 Experiment zur Ermittlung des Sauerstoffgehalts der Luft Feuerlöscher unterscheiden und deren Verwendungsmöglichkeiten beurteilen 	Erkenntnisgewinnung: ■ Kenntnis über die genaue Zusammensetzung der Luft Kommunikation: ■ Austausch über die Auswirkung von Luftverschmutzung auf die Umwelt Nutzung fachlicher Konzepte: Anwendung von Fachwissen zur Brandbekämpfung

Hinweise & Empfehlungen: ■ Nutzung von Lernvideos

- Filmen von Schülerexperimenten
- Erstellung von Präsentationen bzw. Plakaten zu ausgewählten Themen
- Besuch des Chemikums in Marburg

Schulinternes Curriculum für das Fach *Chemie Gymnasium* im Jahrgang 9 [Stand 10/2023]

Lfd. Nr.	Themen	Konkrete Inhalte	Schwerpunkte	Fachspezifische Kompetenzen
9.1	Oxidation, Reduktion und Redoxreaktion über Definition des Sauerstoffs	 Gewinnung von Metallen aus Erzen (inklusive der historischen Entwicklung) Herstellung von Metallen in der Industrie (Hochofenprozess) 	 Herstellung von Kupfer aus Kupferoxid und Kohle Aufstellung einer Affinitätsreihe im Schülerversuch Thermitreaktion (Lehrerversuch) 	Erkenntnisgewinnung: ■ Aufstellung und Interpretation einer Affinitätsreihe ■ Schlussfolgerungen für die Herstellung eines Metalls aus einem Metalloxid ziehen Kommunikation: ■ Auf Basis der Affinitätsreihe über den Ablauf von Redoxreaktionen diskutieren Bewertung: ■ Risiken bei Redoxreaktionen bewerten Nutzung fachlicher Konzepte: Kenntnisse und Kennzeichen chemischer Reaktionen auf Redoxreaktionen anwenden
9.2	Einfache Stöchiometrie	 Einführung von Elementsymbolen und dem Konzept der Wertigkeit Stoffmenge und molare Masse Bezug der Stöchiometrie und der Stoffmenge zur Reaktionsgleichung 	 Zusammenhang zwischen Teilchenzahl, Atommasse und der molaren Masse eines Stoff Berechnung der Masse und Stoffmenge mit Hilfe der molaren Masse Aufstellung und stöchiometrischer Ausgleich von Reaktionsgleichungen 	Erkenntnisgewinnung: ■ Unterscheidung zwischen einer Stoffportion und einer Stoffmenge Kommunikation: ■ Setzen von chemischen Sachverhalten in Größengleichungen (und umgekehrt) Nutzung fachlicher Konzepte: Symbolische und stöchiometrisch korrekte Beschreibung von chemischen Reaktionen
9.3	Das PSE	 Systematischer Aufbau des PSE (Gruppen und Perioden) Weiterentwicklung des Atommodells von Dalton zum Atommodell nach Bohr 	 Historische Entwicklung der Vorstellung von Atomen von Thomson über Rutherford und bis Bohr Darstellung von Atomen mit Hilfe des Schalenmodells Differenzierung zwischen Elementen und deren Isotopen 	Bewertung: Beurteilen der verschiedenen Modelle im historischen Kontext Einschätzung des Reaktionsvermögens mit Hilfe des PSE Nutzung fachlicher Konzepte: Begründung von Stoffeigenschaften anhand der Elektronenkonfiguration

9.4	Elementgruppen	 Eigenschaften der Edelgase, Halogene, Alkalimetalle und Erdalkalimetalle Nachweis der Alkalimetalle und Halogene 	 Flammenfärbung der Alkalimetalle im Schülerversuch Halogenidnachweis mit Silbernitrat Verwendung von Edelgasen als Leuchtmittel 	Erkenntnisgewinnung: Entwicklung von Fragestellungen zu den Eigenschaften und dem Reaktionsverhalten verschiedener Elementgruppen
9.5	Salze	 Vorkommen und Gewinnung von Salzen Ionenbindungen und Salzgitter (am Beispiel von Natriumchlorid) Aufstellung der Verhältnisformeln von Salzen Salze und Metalle im Vergleich (Metallbindungen) 	 Entstehung und Aufbau von Salzlagerstätten Zusammensetzung von Salzen aus Metallen und Nichtmetallen Bildung und Eigenschaften von Ionen Deutung der Eigenschaften von Salzen anhand ihres chemischen Aufbaus Verwendung der "Oktettregel" Eigenschaften von Metallen 	Erkenntnisgewinnung: Erschließung der Ionenbindung aus dem PSE und experimentell ermitteltem Reaktionsverhalten Kommunikation: Begründung der Eigenschaften und des Aufbaus von Salzen unter Nutzung von Fach- und Symbolsprache Nutzung fachlicher Konzepte: Nutzung des Struktur-Eigenschafts-Konzeptes

Hinweise & Empfehlungen: Nutzung von Lernvideos Arbeiten mit Modellen

- Erstellung von Präsentationen bzw. Plakaten zu ausgewählten Themen

Schulinternes Curriculum für das Fach *Chemie Gymnasium* im Jahrgang 10 [Stand 10/2023]

Lfd. Nr.	Themen	Konkrete Inhalte	Schwerpunkte	Fachspezifische Kompetenzen
10.1	Phänomene des Wassers	 Erklärung der Eigenschaften des Wassers (Schmelzpunkt und Siedetemperatur) anhand von H- Brücken und zwischenmolekularen Kräften Wasser als Lösemittel Elektronenpaarbindungen und Lewis-Schreibweise VSEPR-Konzept 	 Schülerversuch Abgelenkter Wasserstrahl Polare Bindungen und Dipole Darstellung von Stoffen in der Lewis- Schreibweise mit Hilfe von Molekülbaukästen Erklärung räumlicher Anordnungen von Molekülen mit Hilfe des VSEPR- Konzepts 	 Erkenntnisgewinnung: Entwicklung geeigneter Modelle zur Erklärung von chemischen Phänomenen Nutzung des Konzepts der Elektronegativität Kommunikation: Phänomene unter Verwendung von Fachsprache und Symbolik erklären Bewertung: Beurteilung des Wassers als "Elixier des Lebens" Nutzung fachlicher Konzepte: Erklären der Eigenschaften des Wassers anhand dessen Struktur
10.2	Eigenschaften saurer und alkalischer Lösungen	 Herstellung und Eigenschaften von Säuren sowie Laugen Säure-Base-Theorie nach Brönsted Neutralisation und Salzbildung Bedeutung und Nutzung des pH- Wertes 	 Messung der Leitfähigkeit und des pH-Wertes von Säuren und Laugen Reaktionen mit Metallen Neutralisationsreaktion von Salzsäure und Natronlauge Anfertigung von Steckbriefen von Säuren und Laugen Bedeutung von Säuren und Laugen im Alltag und in der Industrie Berechnung des pH-Wertes von Säuren und Laugen 	 Erkenntnisgewinnung: Auswerten von Versuchsergebnissen und Deuten auf Teilchenebene Eigenständiges Entwickeln und Auswerten von Versuchen anhand der Neutralisation Kommunikation:

10.3	Die "Magie des Kohlenstoffs"	 Historie der Organik (Wöhler) Homologe Reihe der Alkane Alkane als fossile Brennstoffe Übersicht über weitere Kohlenwasserstoffe (funktionelle Gruppen) 	 Historischer Einführung in die organische Chemie Gewinnung fossiler Brennstoffe aus Erdöl (fraktionierte Destillation) Beschreibung der physikalischen Eigenschaften von Kohlenwasserstoffen (Van-der-Waals-Kräfte, Schmelz- und Siedepunkte) Vielfalt der organischen Verbindungen 	 Erkenntnisgewinnung: Erschließung des Aufbaus von organischen Verbindungen Ordnung und Systematisierung von organischen Stoffklassen nach ihrem Aufbau Kommunikation: Verwendung einer für die organische Chemie spezifischen Fachsprache Bewertung: Zukunft fossiler Energieträger Bewertung der Verwendung organischer Produkte im Alltag Nutzung fachlicher Konzepte: Struktur-Eigenschaftsbeziehungen kennen und anwenden (Polaritäten, Schmelz- und Siedepunkte, Löslichkeiten)
------	---------------------------------	--	--	--

Hinweise & Empfehlungen Nutzung von Lernvideos

- Arbeiten mit Modellen
- Erstellung von Präsentationen zu ausgewählten ThemenLernzirkel zur organischen Chemie in Marburg